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Abstract 

Staphylococcus aureus contamination of foods is one of the most prevalent causes of 
gastroenteritis worldwide, which is caused by ingestion of preformed toxins. Ready-to-eat 
foods without previous heat treatment before consumption are susceptible to be contaminated 
during processing, storage or handling at both retail points and domestic homes. In this study, 
a logistic regression based on product units neural networks (LRPU) was carried out to 
determine the probability of growth of a five strain S. aureus cocktail as a function of storage 
temperature (8-19ºC), pH (4.5-7.5) and water activity (aw) (0.856-0.999). A good adjustment 
of the LRPU model was observed for both training and test datasets (91.10% and 89.36% 
cases correctly classified respectively). Results confirmed the tolerance to low levels of aw of 
the working cocktail, since it was capable to grow at 19ºC up to aw levels of 0.867 and at 
neutral pH (7.0). The storage temperature had a marked effect on S. aureus cocktail growth, 
since at 8ºC, it was only able to grow at aw levels higher than 0.977. Regarding pH effect, at 
pH levels below 5.0, probability of growth was lower than 50 % in most cases at temperatures 
lower than 16ºC. This study provides a solid scientific basis that verifies the criteria 
established by food industries for the assurance of the microbiological safety of the product 
until the consumption phase, currently demanded by the European legislation. 
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Introduction 

Food poisoning caused by staphylococcal contamination is one of the most prevalent causes 
of gastroenteritis worldwide, which is caused by the ingestion of food that contains preformed 
toxins (Jablonski and Bohach 2001). Specifically, S. aureus offen produces the most common 
types of food intoxication (Jablonski and Bohach 2001). The number of illnesses reported to 
the Spanish Microbiological Information System (SIM) caused by S. aureus ingestion, were 
increasing during the last five years, until reaching more than 550 annual cases 
(http://www.isciii.es/jsps/centros/epidemiologia/informacionMicrobiologica.jsp). 
Ready-to-eat foods without a previous heat treatment are susceptible to be contaminated 
during processing, storage or handling in both retail points and domestic homes (Huang et al., 
2001). The key to controlling S. aureus is an understanding of the factors that influence on its 
growth in foods and the modification of these factors in order to limit potential risks (mainly 
temperature, pH and water activity).  
Probability models are characterized by defining the growth/no growth limits of a specific 
microorganism in a medium as a function of some environmental factors, in a very limited 
range of conditions. There are several studies reported in the literature regarding the use of 
logistic equations to describe growth/no growth boundaries (Lanciotti et al., 2001). However, 
when a strong interaction exists between the variables considered, the use of Product Unit 
Neural Network models (PUNN) is gaining attention, due to they are more effective in 
detecting those interactions and they have the ability to implement higher order functions 
(polynomial) as a particular case (Gurney 1992). The use of PUNN models integrated as 
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logistic regression techniques (LRPU) has been proposed as an alternative to determine 
bacterial growth/no growth limits (Valero et al., 2007).  
On the other hand, boundary models published in literature usually consider few replicates per 
condition selected, which leads to obtain a very narrow borderline between conditions that 
permit and not growth. This fact occurs because traditionally growth/no growth models were 
focused to define a growth/no growth interface as broader as possible that implies a minor 
number of replicates. However, a higher number of replicates may imply a more gradual 
transition between growth and no growth zones, providing more accurate estimations of 
microbial behaviour (Vermeulen et al., 2007).  
In this study, a non linear logistic regression procedure based on product units neural network 
models (LRPU) was performed to determine the probability of growth of a five strain S. 
aureus cocktail as a function of storage temperature (8-19ºC), pH (4.5-7.5) and water activity 
(aw) (0.856-0.999).  

Material and Methods 

Source of data 
A cocktail of five strains of S. aureus (CCM 1484, ATCC 13565, CCTM La 2812, ATCC 
19095, and ATCC 23235) was chosen to consider the variability between strains at the 
different conditions performed (Stewart et al., 2002). Growth/ no growth data of S. aureus 
were collected, considering as the main variables: temperature (8, 10, 13, 16 and 19ºC), pH 
(4.5; 5.0; 5.5; 6.0; 6.5; 7.0 and 7.5) and aw (0.856; 0.867; 0.877; 0.887; 0.897; 0.906; 0.915; 
0.924; 0.933; 0.941; 0.949; 0.956; 0.963; 0.970; 0.977; 0.983; 0.989; 0.995 and 0.999). 
Modified media at the different model conditions were inoculated with 105 cfu/ml of the 
working cocktail. Assessment of growth was performed by turbidity measurements in 
Bioscreen C (Labsystems, Finland) and checked by plating onto Baird Parker agar (Oxoid, 
UK) at regular time intervals during 40 days. 30 replicates per condition were made and for 
any combination of factors, growth was recorded as “1” if it occurred and “0” if did not. Each 
condition was considered as growth if more than 50% of the replicates grew (probability of 
growth (P) > 0.5).  

Development of the LRPU model 
For the model development, total data (287 conditions) were divided into two sets: one set for 
training (146 conditions that covered the extremes of domain) and another for testing (141 
conditions). To start processing data, the input variables were scaled in the range [1, 2]. The 
new scaled variables were named T*, pH* and aw *. For modelling purposes, a transformation 
of aw into bw ((1-aw) 0.5) was made. 
Logistic regression is a widely used statistical modelling technique in which the probability 
(P) of the dichotomous output (0, 1) is related to a set of explanatory variables (x) in the form:  
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where P is the probability of growth, ( )0 1 2, , ,..., kβ β β β=β are the model coefficients and 
( 0 1 2, , ,..., k )x x x x=x the scaled variables (T*, pH* and bw *). 

We applied a new logistic regression model based on product-units by introducing a nonlinear 
term constructed with basis functions given by products of the inputs raised to real powers 
(w), which express the possible strong interactions among the factors (Hervás-Martínez and 
Martínez-Estudillo 2007). The general expression of ( , )f x β is given by: 
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coefficients was based on the combination of an evolutionary algorithm and a local 
optimization procedure carried out by standard maximum likelihood optimization method 



(Hervás-Martínez et al., 2006). Model training was implemented in Java 1.6 (Sun 
Microsystems, Inc.). 

Results and Discussion 

Model adjustment 
Out of the 287 conditions selected, 156 corresponded to microbial growth, while in 131 no 
growth occurred. Results obtained regarding the classification accuracy are expressed in 
Table 1. The optimal structure for the LRPU model was in the form 3:2:1 with three input 
nodes (corresponding to the variables introduced in the equation), two hidden nodes and one 
output layer that classified the results into two classes: growth and no growth. The final 
equation obtained was: ( , )f x β  = 1.887 (T*-1.554 pH*-1.019 bw* 4.264) + 4.76 (T*-6.404) - 7.328 
For the training dataset, 91.10 % of the cases were correctly classified for the model. For the 
test dataset, a good generalization capacity of the model was obtained, since 89.36% of the 
cases were correctly predicted.  
 
Table 1: classification of cases by the LRPU model 

Furthermore, the LRPU model 
generated less false negative cases 
(i.e., no growth cases predicted while 
growth cases were observed) than the 
other models, which implies that it 
would be considered fail-safe. This 
fact is especially important in 
establishing new formulations for a 
food product which guarantee that no 

growth will occur.  

Training  Predicted probability 
  1 0 

1 79 4 Observed 
probability 0 9 54 

Test  Predicted probability 
  1 0 

1 77 5 Observed 
probability 0 9 50 

Effects of environmental variables on probability of growth of S. aureus cocktail 
Model predictions obtained indicated that temperature had a strong effect on the probability 
of growth of S. aureus cocktail, being the main factor that regulates its growth (Degremont 
and Membré 1995). At 8ºC, growth did not occur at pH 4.5; while values of P were lower 
than 0.5 at pH 6 and aw = 0.990. As temperature increased, there was more resistance of S. 
aureus cocktail to lower pH and aw values. These findings suggest that by designing different 
combinations of pH and aw, S. aureus growth can be inhibited at refrigeration temperatures, 
which is the main factor to prevent staphylococcal intoxication. At 10ºC, growth was recorded 
at aw levels of 0.963 and neutral pHs (>6.5). The minimum aw value at which growth was 
observed decreased at higher temperatures until reaching 0.867 at 19ºC, confirming the 
resistance of the pathogen to low moisture levels and high salt concentrations (Mc Meekin et 
al., 1987). This fact could be interesting for uncooked, refrigerated and shelf stable foods, in 
which the intrinsic properties of the food (pH and salt) and temperature must interact to 
prevent growth or preferably promote inactivation of the pathogen (Whiting et al., 1996). 
Regarding pH, the optimal range was situated between 6.0 and 7.0, but a decrement of 
replicates that showed growth was obtained at pH 7.5. The optimum pH for growth is around 
7.0 but it is influenced by other environmental conditions. Growth at a particular pH also 
depends on the acid used to adjust the pH. On the contrary, a higher sensitivity to low pH 
values was observed at 8 and 10ºC, since the pathogen did not grow at pHs<5 and aw<0.97. 
This is in accordance to Lanciotti et al. (2001) who stated the influence on S. aureus growth 
at low pH values. The observed probabilities compared to the predicted ones at 0.9; 0.5 and 
0.1 for temperature and aw at a fixed pH of 5.5 are represented in Figure 1. It can be seen that 
a slighter transition between growth and no growth zones occurred at 13 and 16ºC rather than 
at 8, 10 and 19ºC, mainly favoured by the high number of replicates performed per condition. 
These models will allow product developers to visualize the “safe space” for the formulation 
of shelf-stable foods by employing these preservation factors. Regarding microbiologists, they 



can assess risks more effectively over a wide range of products, and finally, consumers will 
have greater assurance of food safety. 
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Figure 1: Growth/no growth interfaces for the predicted growth limits of S. aureus cocktail 

obtained by the LRPU model calculating the probabilities at 0.1, 0.5 and 0.9. pH = 5.5. 
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